A Branch and Cut Algorithm for NonconvexQuadratically Constrained Quadratic ProgrammingCharles

نویسندگان

  • Charles Audet
  • Pierre Hansen
چکیده

We present a branch and cut algorithm that yields in nite time, a globally -optimal solution (with respect to feasibility and optimality) of the nonconvex quadratically constrained quadratic programming problem. The idea is to estimate all quadratic terms by successive linearizations within a branching tree using Reformulation-Linearization Techniques (RLT). To do so, four classes of linearizations (cuts), depending on one to three parameters, are detailed. For each class, we show how to select the best member with respect to a precise criterion. The cuts introduced at any node of the tree are valid in the whole tree, and not only within the subtree rooted at that node. In order to enhance the computational speed, the structure created at any node of the tree is exible enough to be used at other nodes. Computational results are reported. Some problems of the literature are solved, for the rst time with a proof of global optimality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A branch-and-cut algorithm for nonconvex quadratic programs with box constraints

We present the implementation of a branch-and-cut algorithm for bound constrained nonconvex quadratic programs. We use a class of inequalities developed in [12] as cutting planes. We present various branching strategies and compare the algorithm to several other methods to demonstrate its effectiveness.

متن کامل

A spatial branch-and-cut method for nonconvex QCQP with bounded complex variables

We develop a spatial branch-and-cut approach for nonconvex Quadratically Constrained Quadratic Programs with bounded complex variables (CQCQP). Linear valid inequalities are added at each node of the search tree to strengthen semidefinite programming relaxations of CQCQP. These valid inequalities are derived from the convex hull description of a nonconvex set of 2 × 2 positive semidefinite Herm...

متن کامل

Semidefinite-Based Branch-and-Bound for Nonconvex Quadratic Programming

This paper presents a branch-and-bound algorithm for nonconvex quadratic programming, which is based on solving semidefinite relaxations at each node of the enumeration tree. The method is motivated by a recent branch-and-cut approach for the box-constrained case that employs linear relaxations of the first-order KKT conditions. We discuss certain limitations of linear relaxations when handling...

متن کامل

Speeding up IP-based algorithms for constrained quadratic 0-1 optimization

In many practical applications, the task is to optimize a non-linear objective function over the vertices of a well-studied polytope as, e.g., the matching polytope or the travelling salesman polytope (TSP). Prominent examples are the quadratic assignment problem and the quadratic knapsack problem; further applications occur in various areas such as production planning or automatic graph drawin...

متن کامل

Combining Discrete Ellipsoid-based Search and Branch-and-Cut for Integer Least Squares Problems

In this paper we perform computational studies on two types of integer least squares (ILS) problems that arise in wireless communication applications: unconstrained and box-constrained ILS problems. We perform extensive experiments comparing the performance of the discrete ellipsoid-based search (DEBS) method and the branch-and-cut (B&C) mixed integer programming (MIP) solver, and identify the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999